AM Silicon Nitride Ceramics

A Quick Intro to Additive Manufacturing Ceramic Solutions

Additive manufacturing (AM) of ceramics, also known as ceramic 3D printing, is an attractive engineering solution for challenging applications. Technical ceramics, like silicon nitride (Si3N4), largely outperform industrial-grade polymers and metals for high-temperature operations, with superior mechanical properties and thermodynamic stability. Yet these same properties make ceramics difficult to use as a feedstock in additive manufacturing processes.

Continue reading

Outlining Diamond Grinding of Ceramics

Advanced ceramics manufacturing comprises three essential stages: raw powder processing; forming; and sintering. This generally describes the process of consolidating a powder-based feedstock and firing the green body to achieve a fully-densified technical ceramic. Net shapes with comparatively loose dimensional tolerances (~1-3%) can typically be produced ‘as-sintered’; requiring no machining or finishing prior to quality assurance inspections. Components with tight tolerances cannot be produced ‘as-sintered’ and may require diamond grinding to ensure that the net shape is usable according to the design intent.

Continue reading

Syalon 101 Extrusion Dies for Copper, Brass, and Nimonic Alloys

Extrusion describes the process where a metal such as copper or brass is forced through an extrusion die with a smaller cross-section. This deforms the material, causing a lengthening of its granular structure and forcing it to adopt a new cross-section uniformly across the entire manufactured workpiece. It is an extremely common metal forming process used to convert cylindrical billets into hollow tubes, or more complex profiles and sections.

Continue reading

Ceramic Materials in Defence Applications

The 20th Century was an era of rapid innovation in ballistics technology, and subsequently in how conflicts were conducted. Military organisations worldwide opted to improve the manouverability of troops and vehicles without compromising the performance of protective equipment in response to high velocity impacts. This led to the gradual adoption of novel ceramic materials in defence applications.Continue reading

Benefits of Silicon Nitride Milling Media

Advanced ceramic grinding media are on the cutting-edge of wearing applications. The right grinding balls can be used to break down analytical samples, industrial intermediates, and more, simply by applying continuous abrasive forces. Generally, the goal is to reduce the size of particles, or to blend heterogeneous materials together. This can be carried out with hydraulic and pneumatic systems. But the oldest, simplest, and often most effective method, is to repeatedly impact sample materials with a tougher milling medium, causing particles to decompose through mechanical attrition.

Continue reading
Advanced ceramic materials in use at an aluminium foundry

Molten Aluminium Degassing using Sialon

Molten aluminium (Al) is an extremely reactive substance. The molten metal is so reactive that it will readily decompose water in the atmosphere, or moisture on wet tools, releasing hydrogen into the melt. Even small volumes of water condensing on a crucible furnace or transfer ladle can affect the quality of final castings. Excess hydrogen can affect the distribution of porosity, and the total amount of shrinkage, ultimately increasing scrappage. Eliminating gas absorption from molten aluminium is unfeasible. So, metallurgists tend to focus on preventing hydrogen introduction into the melt and removing as much as possible prior to casting.

Continue reading